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Abstract—All existing models interrelating crack propagation characteristic properties with heat
exchange in zones around the crack tips simulate the heat production area by simple geometrical
forms, like circles or squares. They assume also constant heat production rates over the whole area
of the source. Contrariwise, the model introduced in the present study is based on two improved
and more realistic assumptions concerning the shape and dimensions of the heat source and the
spatial distribution of heat production density inside the heat source. These assumptions, together
with Rosenthal’s moving-point-source solution, yield a reasonable and improved model for a fast
and rather simple numerical approach, whose results are in agreement with existing experimental
evidence. The method was applied to two different materials, one polymer (polycarbonate) and the
other metal (aluminum alloy) and their results appear to be compatible with reality and concordant
with respective experiments. [n addition, the method was applicd to relatively high crack propagation
velocitics revealing the existence of two symmetric off-axis temperature extrema in cither side of the
crack propagation axis. This behavior may be directly related to the phenomenon of crack branching,
where similiar maxima of energies and dircctions of branching are systematically observed at the
same velocities.

L INTRODUCTION

It is widely accepted that heat exchange is always present during crack propagation. The
source of this heat is the arca around the travelling crack tip, which is in general plastically
deformed. Indeed, plastic deformations are the cause of the production of high heat con-
centrations around the crack tips. It is well known that a fraction of about 60-80% of the
total plastic energy stored in polymeric materials is converted into heat (Engleter and
Miiller, 1958), while this fraction reaches 90% for metals (Taylor and Quinney, 1958).

Taking into account the fact that, even for brittle materials, the energy consumed for
the creation of new surfaces is negligible as compared with the respective plastic energy,
the sume being true for the kinctic encrgy of the small plastic zone, we can affirm that a
portion of about 60-90% of the total energy, furnished to the plastically deformed zone by
the elastic stress field, is released in the form of heat. This heat concentration causes
significant temperature increases in the immediate vicinity of the running crack tip. The
great interest for the determination of the temperature ficld surrounding the plastic zone is
justified, if we consider that a rise of the temperature only of the order of some decades
reduces drastically the value of the mechanical properties of any material. For example, an
increase of the temperature from about 20 C to about 80 C causes a decrease of the yield
stress of PMMA to half its initial value (Bowden, 1973), whereas a temperature increase
of 400°C in steels creates a 30% decrease of the value of the clastic modulus (Theocaris
and Coroncos, 1964).

However, despite the effort invested until now, the exact temperature field is still
unknown, and large dispersions between the reported values have been recorded. Fox and
Fuller (1971), studying the infra-red radiation emitted during the fracture of PMMA
specimens, have recorded temperature elevations of the order of 500°C, whereas Weichert
and Schonert (1978), estimated temperatures between 2500°K and 3000°K for glass and
about 4000 K for quartz by analyzing the light emission observed during fracture and
comparing the resulting relative light intensities with the normalized black body radiations.
Moreover, the theoretical model of Weichert and Schénert (1974). predicted maximum
temperature rises of 910 K for crack velocities of 200 m s ' and for radii of the circular
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heat zones of the order of p = 20A. while at the front of the heated zones the predicted
temperature elevations were lower than 300 K. Contrariwise, the approach of Marshall ¢/
al. {1974) gives for PMMA specimens much lower temperature elevations.

However, it is worthwhile emphasizing that all these values are merely indicative. since
the exact temperatures are functions of the coordinates of the points examined. relative to
the crack tips and, also. of the dimensions and the velocities of the heat sources. Moreover
the discrepancies observed are partly due to the various rather inadequate models simulating
the heat sources. Indeed. the shapes and dimensions of the heat sources and the forms of
the heat-production distribution affect strongly the final results, as it is noted in Weichert
and Schonert (1974). The existing models simulate the heat-production areas by simple
geometrical forms, like circles or squares, of rather arbitrary dimenstons, assuming also
constant heat production rates over the whole arca of the source. These assumptions
constitute the weaknesses of the existing models. The model introduced in this paper is
relieved from these assumptions and therefore constitutes an improved description of the
phenomenon of heat production around the tip of a running crack in physically sound
manner.

2. DESCRIPTION OF THE MODEL

The model is bused on two basic hypotheses, simulating better the heat-production
phenomenon.

Hypothesis 2.1, The shape of the heat source coincides with the shape of the plastically
deformed zone enreloping the moving crack tip. Since heat is mainly produced inside plastic
zones, this first assumption approaches reality. The bounds of the plastic enclaves are
determined by means of a proper yield condition.

Flypothesis 2.2, The density at cach point of the heat source is intimately reluted to the
amount of plastic deformation ar the same point. This assumption implies that the heat
density depends on the local value of the respective equivalent stress.

Thus, the heat source is readily determined by the well-known von Mises yield eriterion
for plane stress, which is intimately related with the component of the distortional cnergy
density. The von Mises eriterion is expressed by

al(r.0)+al(r.0)+ 30l (r.)—a_(r,tho, (r.0) = 6§ (H

where a,(r, 0), (i, j = x, v} are the components of the dynamic stress field, as it is deseribed
by Freund and Clifton (1974). Morcover, (r, ) are the polar coordinates centered on the
moving crack-tip and g, is the yicld stress in simple tension of the material. Solving eqn (1)
with respect to r, the following expression for the radius, r,(0). of the clastic—plastic
boundary is obtained ;
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where the functions f(0). (i = 1, 4) depend upon the components of the dilatational (¢y)
and the distortional (¢») wave velocities of the material, and the constants g, (i = 1.4,
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Relation (5) expressing the mode [ encrgy rate % for dynamic loading, whose static term
is defined in McClintock. and Irwin (1965). takes into account the effect of yielding upon
the stress distribution near the crack tip. K| is the mode I dynamic stress intensity factor
which depends on its static value Ky multiplied by a correction factor defined in Rose (1976).

This distribution, as derived from a mode T elastic-plastic analysis, indicates that
yielding for clastic-perfectly plastic materials translates the stress curve away from the
crack tip by an amount cqual to the radius of the plastic zone, as it is derived from the
clastic analysis. Thus, the plastic zonge is assumed to be extended radially by a factor of
two. For mode I loadings and for brittle or semi-brittle materials under dynaiic loading,
this factor of two is reduced considerably. However, here it is taken equal to 2 so that the
cnergy rate % is doubled in relation (5).

The spatial distribution of heat-production density is dg(r,.0,), where r,, 0, are the
coordinates ol a generic point .S inside the heat source, and it is defined by a convenient
function covering the following requirements

(1) The function must give a maximum heat density at the crack tip (r, = 0) and zero
heat density along the elastic-plastic boundary [r, = r,(0)].

(i) Between the above two extreme values the function must follow a law similar to
the variation of the equivalent stress inside the plastic enclave, which is analogous to
plastic work.

(iti) The integral of dg(r.8,) over the source surface 4 must give the total heat
production Q. of the source.

A convenient family of functions satisfying the two above cited conditions is expressed by

K| 2
dy(r,,0) = =M =1 |cos (0/2)dA (6)

AlLrl+r,,

where A is the total heat source area, dA is the area of cach clementury heat source inside
the plastic zonc, and # is a positive arbitrary constant. Morcover, k is a parameter evaluated
by satisfying the third condition. The total heat production over the whole area, A, of the
source must be constant and independent of the type of grid network of sources and the
number of their partitions inside the plastic enclave, sclected for the numerical evaluation
of the temperature rise at any point outside the plastic region. Then it is valid that:

J~J‘dq(r,. 0)=Q (7N

or. by mcans of eqn (3) we may deduce that:
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where r,, stands for r (). It was taken into account in this relation that the axis of the
crack is the axis ot symmetry of the source for an external load perpendicular to the crack
HENES

For simplicity, the exponent n was taken as # = 1. since the equivalent stress dis-
tribution inside the plastic encluve may be accepted as obeving a r ' law. However, the
influence of this exponent shall be studied in the sequel. The double integration of the
denominator of eqn (8), with 2 = [, can be executed numerically. but since the analytical
expression of the clastic-plastic radius r,(8) is known from u;n {2). we can, after some
algebra. convert the double integrals into single integrals, thus avoiding the various error
sources interfering during the numerical evaluation of the surface integrals. The final form
of the factor ~ 15 given by

AP e . (9)
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Introducing eqns (2) and (9) into cgn (6) we obtain for the heat-density distribution dg(r,. 1)
the expression:
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whose numerical evaluation s clementary,

In order to caleulate, now, the temperature rise at a point P{r,. 4.}, we divide the heat
souree into a number of elementary heat sources S(r. 0, where {r,. U and {r,. () are the
polar coordinates of the point examined and of the elementary heat source with respect to
the moving crack tip. respectively, as it is indicated in Fig, L Each elementary heat source
is assumed to be a moving-point heat source, which causes at the fixed generic point P(r,,
() an clementary temperature rise d(AT) (r,.0,), given by the well-known Rosenthal’s
(1946) cquation:

0, Lcos,
dAT)(r,. 0,) = ‘d":{( >{pr( €in oo )} ( ) (1

where ¢ is the crack velocity, K is the coeflicient of the thermal conductivity of the material,
% is the coefficient of thermal diffusivity, K, is the second-kind zero-order Bessel function
and dq(r..0,) is the heat density of the point source S(r,.0.) given by eqn (10). Morcover,
(rp.0,) are the relative coordinates of the point P(r,,.O ) rc.h.rrcd to the elementary source
S(r.. ()) which are derived and given by simple geometrical relations as it is clear in
Fig. 1

Integrating eqn (11) over the whole surface of the plastic enclave around the moving
crack tip we obtain the following equation:
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Fig. 1. The von Mises plastic enclave at the tip of & running crack as the heat source.
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which gives the total temperature increase, AT(r,,0,), at the point P(r, 0,) under con-
sideration,

The numerical computation of AT(z,, 8,) proceeds by dividing the heat source by a
Cartesian grid into a number of ciementary orthogonal sources, whose areus tend to zero
as their number increases, and tends to infinity. These elementary sources are considered
as point sources obeying Rosenthal’s solution (Rosenthal, 1946). The procedure proved to
be stable and accurate. Morcover, it constitutes a fast method when compared with existing
double integrating rules. In the present application we have used N = 100 as a number of
partitions of the heat source, along either direction, thus dividing the heat source into about
10* elementary sources. The maximum error was estimated to be less thun 0.5% everywhere.

3. RESULTS AND DISCUSSION

The above-described method was applied to two materials with low and high thermal
conductivities, K, respectively, namely a PMMA polymer plate with K = 0.193 Wm~'°C
and an aluminum alloy plate with K = 228.45 W m~' °C. Their diffusing coefficients were
2=336x10""m?s"' for PMMA and a = 946 x 10~° m? s~ for the aluminum alloy.
Thin plates of either material were subjected to dynamic loads causing propagation of pre-

existing initial cracks of a length 2x = 0.15 m under mode-1 plane-stress conditions. The
SA8 29:2-8



192 P. S. THEOCARIS e ul.

values of the energy. Q. dissipated as heat, were taken trom DU (1973) - see Fig. 6. for
the case of PMMA —while for the case of aluminum alloy & procedure similar 1o thut of
Wells (1933) was adopted.

It was also assumed that the thin plates of both materials were loaded by a stress at
infinity equal to 0.24,. where o, is the yield stress in simple tension for the respective
material. Consequently, temperature elevations computed by the present method depend
on the stress level assumed. However, due to the lincar elustic stress field description
incorporated. isothermal contours are self-similar versus applied load.

Temperature elevations at point P(r,.8,) lving in a narrow band very close to the
elustic plastic boundary r,, (1) were computed. This band has a width corresponding to 1.01
radth) < r, < 102 r (). Even in such a narrow band temperature gradients evaluated by
the model were signiticant, especially for the case of PMIMAL

Figure 2 presents the sothermal contours for the PMMA plate plotted around the
crack tip for three ditterent crack velocities and tor a4 narrow zone surrounding the heat
source and extending between the radu 1.OTr, () and 1.02 1, (0), where r, (1) is the respective
polar distance of the clastic -plastic boundary for cither matenial. In Fig. 2b this boundary
is also plotted under a reduced scale in order to avord contusion with the isothermals lying
inside this zone. One can observe in these tigures that

(1) Strong temperature gradients exist in both radial and angular directions. Thus, for
crack velocities ¢ = 0.50 ¢, and for (r,00) = (102 r,0) there s o gradient
AT Ar 2 13 10% Com ' while for (r,.0,) 3 (102 1, 90 ) this gradient becomes
cquil to AT Ar 2 19 x 10% Cm 'L that s, there is an inerease of 40,

(i For relatively low crack veloctties (¢ < 0.5¢.) the temperature distribution shows
a single mmimum at 0, = 0 and a maximum (not shown m Fie 2y at ) = 180 L as it
wits also concluded by Weichert and Schonert (1974, 1978). For veloaities higher than
half the shear wave velocity, ¢ > 0.5¢,, two symmetric minima appear al 2 maximum
0, vadue up to about S0 .

Figure 3 presents the isothermat contours for alumiumuny plates. Teis readily concluded
that remvarks (1) and (1) above, valid tor the case of PMMA plates, are also valid for the
aluminum plates, but now the gradients are drastically reduced. This is a reasonable
conclusion because of the high thermal conductivity of the alumimam,

Ficure 4 presents the variation of the temperature versus the polar angle 0, for alumi-
num plates, plotted for a scries of ditferent crack velocities. The interesting remark dertved
from this figure is that, tor low crack veloctties, two symmetric minnma exist with respect
to the crack axis, while for high crack velocities and along the same directions the two
minima invert into local maxima.

Concerning, now, the influence of the exponent # on the temperature clevations, it can
be readily derived that as # increases, the temperature outside the plastic enclave is also
tncreasing. This behavior is reasonable since for a given total heat production Q (eqn 7),
low values of n result in strongly varying heat distributions tnside the plastic enclave, while
high values of s result in a more homogencous situation.

The influence of the exponent o can be seen in Fig, 5 where for = 0.25 most of the
total heat is produced very close to the erack tip, whereas for = 4, almost up to the hall
of the plastic radius (r./r,, = 0.4) heat production is roughly equal to that of the crack tip.
So a generic statiomary point 2 outside the plastic enclave in the former case 15 weakly
affected by the rather distant highly productive elementary heat sources, whereas in the
latter case with 7 = 4.0, these “very hot™ sources approach closer to the point 72 and so
their inttuence is stronger,

Figure 6 presents the relative variation of the temperature increase for a generic
stationary point ahead of the crack tip (0, = 0) lying at a distance r, = 1.01r,, for PMMA
and aluminum versus the n values, reduced to their values for # = L [t is clear that, as »
increases, temperatures also increase in accordance with the previous conclusions. in
addition. the poor heat conductivity of PMMA causes much higher temperature increases
in comparison (o those for aluminuni, presenting good heat conductivity.
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4. CONCLUSIONS
The conclusions of the present paper may be summarized as follows :

(1) The theoretically predicted temperature elevations are significant and they agree
well with existing experimental evidence.

(i) The improved hypotheses on which the present model is based. elucidated a
hitherto hidden relationship between temperature distribution and the crack-branching
phenomenon. It is interesting to observe the close coincidences between bifurcation
angles and local temperature minima, which suggest that the propagating cracks prefer
to proceed along the two paths where the material is less ductile.

The results of the present model may be tfurther improved by taking into consideration
the phenomenon of heat transfer by means of heat conduction, given that the heat being
lost by radiation seems to be negligible.

REFERENCES

Bowden, P. B. (1973). The yield behaviour of glassy polymers. In The Physics of Glussy Polvmers (Edited by R.
N. Haward). pp. 279 -339. Applied Science Publishers, London.

Doll. W. (1973). An experimental study of the heat generated in the plastic region of a running crack in ditferent
polymeric materials. Engng Fract. Mech. 8, 259268,

Engelter, R, and Muller, F. H. (1958). Thermische Etfekte bet Mechanisher Deformation, insbesondere von
Hochpolymeren, Kolloid-7. 187,89 111,

Fox, P. G and Fuller, KU NUG. (1971). Thermal mechanism for craze formation in brittle amorphous polymcers,
Nat. Phys. Sci. 234, 13 14,

Freund, 1. B, and Chifton, R.J. (1974). On the unigueness of plane clastodynamic solutions for running cracks.
J. Elast 4,293 299,

Marshall, G. P, Coutts, L. L and Williaums, J. G, (1974). Temperature effects in the fracture of PMMALJ. Mater,
Sei 9, 1409 1419,

McClintock, Fo AL and Trwin, G R (1965). Plasticity aspects of fracture mechanics in [racture toughness testing
and its applications, ASTM Special Technical Publication No. 381, pp. 84 113 ASTM, Philadetphie.

Rose, L. R FL(1976). Recent theoretical and experimental results on fast brittle fracture. fnr. J Frace. 12, 799
8t

Rosenthal, ). (1946). The theory of moving sources of heat and ots application to metal treatment. Trans. ASME
68, 849 X606,

Taylor, G. L and Quinney, L (1958). Mechanies of solids. In The Scientific Pupers of Sir Geoffrey Ingram Tayior
(Edited by G. K. Batchelor), Vol 1, pp. 310 323, Cambridge University Press, Cambridge.

Theocarts, P. S, and Coroncos, A, (1964). The variation of Lateral contraction ratio of low carbon steel at elevated
temperatures. Proc. Am. Soc. Test. Mater. 64, 747 764,

Weichert, R, and Schonert, K. (1974). On the temperature rise at the tp of fast running crack. J. Mech, Phys
Solidy 22, 127 133,

Weichert, R, and Schonert, K. (1978). Heat generation at the tip of a moving crack. J. Mech. Phys. Soluds 26,
151 161,

Wells, A AL (1933). The mechanics of north brittle fracture. Welding Rex. 7, 3456,



